Automated Acquisition of Tactical Knowledge through Contextualization

Avelino J. Gonzalez

William J. Gerber

Jose Castro

Intelligent Systems Laboratory

School of Electrical Engineering and Computer Science

University of Central Florida

Orlando, FL 32816-2450

gonzalez@pegasus.cc.ucf.edu,bill@isl.engr.ucf.edu, jcastro@pegasus.cc.ucf.edu
Keywords:

Automated knowledge acquisition, Context-based Reasoning

Abstract: It is widely accepted that acquisition of the knowledge behind military tactics is one limiting factor in the development of computer generated forces. This has been addressed by several researchers with varying degrees of success. Nevertheless, the concept of building a model directly via a query session between a subject matter expert (SME) and an intelligent system remains an unachieved goal. Such a system would have several advantages. The most important of these would be the drastic decrease in manpower effort to implement the tactical behaviors directly into whatever language is used by the modeling paradigm. Moreover, fewer errors can be expected, making the verification of the model less difficult. Lastly, a tool developed to carry out the query session and build the model could serve to maximize re-use of previously defined tactics. Because of its modular and hierarchical nature, Context-based Reasoning lends itself very well to automating the knowledge acquisition process. This can be used to advantage when designing a tool to accomplish this. This paper describes a system that develops a model of tactical behaviors via a Q&A process with the SME. Through these queries, the user is progressively asked to provide details of the component elements of these contexts, such as the objects involved in the scenario, the behavior functions and the rules for transitioning to other Contexts. A prototype was built and evaluated. Comparisons with manual knowledge base development are reported. The metrics used are the number of person hours required to develop the model automatically vs. manually, and the proportion of the model that can be developed in this fashion. We use a non-trivial sea scenario mission as the benchmark for the comparisons.

1. Introduction

Over the past decade or so, research in Computer Generated Forces (CGF) has focused on better ways to represent tactical human behavior for training and analysis. Many advances in representation have been made as a result of this work. What has become clear more recently is that the effort required to build the CGF models is both large and costly. Some research work has been undertaken to solve this problem. Delugach and Skipper [1] describe an approach based on repertory grids to acquire the knowledge, and convert it into conceptual graphs. They refer to them as tracked repertory grids. They claim it facilitates knowledge acquisition, but provide no support for that claim. Other approaches involve learning directly by the agent, generally by observation. [2, 3, 4, 5]. However, such learning strategies are still in an early stage of investigation, and do not provide near-term relief for the acute problem in acquiring and representing large volumes of knowledge for even relatively simple missions.

This paper describes an investigation into one means to semi-automatically build CGF models. A tool embodying this approach can reduce the effort required to build the models, as well as reduce errors. This approach is based on the inherent nature of a context-based modeling paradigm called Context-based Reasoning (CxBR). Its highly structured form and hierarchical organization lends itself well to an automated query system. We call this process the Context-based Intelligent Tactical Knowledge Acquisition (CITKA) system. This process is described in section 3 below. Prior to that, a brief discussion of Context-based Reasoning and the features that make it an excellent medium for representing and automatically acquiring tactical knowledge is described.

2. Context-based Reasoning: Why it Facilitates Knowledge Acquisition

CxBR is based on the idea that in executing a mission, an agent will experience several different situations, all in sequence. Each situation will require certain skills and actions in order to successfully navigate/survive it. Furthermore, situations evolve from one to the next, often abruptly, less often gradually. To successfully complete the mission, the agent has to have the skills required to “navigate” each of the tactical situations, and must recognize when the situation has changed. These tactical situations can be likened to contexts. Therefore, the three basic tenets of CxBR are:

1) A tactical situation calls for a set of actions and procedures that properly address the current situation.

2) As a mission evolves, a transition to another set of actions and procedures may be required to address the new situation.

3) Things that are likely to happen while under the current situation are limited by the current situation itself.

CxBR encapsulates knowledge about appropriate actions and/or procedures as well as compatible new situations into hierarchically organized contexts. A sample hierarchy is depicted in Figure 1.

[image: image1.bmp]

Figure 1 – Context Hierarchy

Mission Contexts define the mission to be undertaken by the agent. While it does not control the agent per se, the Mission Context defines the scope of the mission, its goals, the plan, and the constraints imposed (time, weather, rules of engagement, etc). The Main Context is the primary control element for the agent. It contains functions, rules and a list of compatible next Main Contexts. Identification of a new situation can now be simplified because only a limited number of all situations are possible under the currently active context. Sub-Contexts are abstractions of functions performed by the Main Context which may be too complex for one function, or that may be employed by other Main Contexts. This encourages re-usability. Sub-Contexts are activated by rules in the active Main Context. They will de-activate themselves upon completion of their actions. Refer to Gonzalez and Ahlers [6] for details on CxBR.

Therefore, in order to build a CGF model in CxBR, the following must be defined:

· The Mission Context must be identified, and a value set for its applicable attributes. These include name of the mission, description, weather, lighting conditions, location, constraints, and objective to be achieved in the mission.
· The Main and Sub-contexts to be used must be identified by the Subject Matter Expert (SME). This is the case whether the context is part of the original plan, or in reaction to unplanned but potentially expected situations.

· The procedures required for controlling the simulated entity while under each Main and Sub-context must be identified, specified, written and incorporated within the appropriate context.

· The rules determining context transitions must be identified, specified, written and incorporated within the appropriate context.

· The objects involved in the mission must be identified, and their capabilities specified and defined. This includes the enemy forces as well as any teammates. For example, if the mission is for a platoon of M-1 tanks, the tank’s maximum speed, turning radius, fuel capacity, weapons load, etc. is defined.

· Helping functions must be identified, specified and defined. Examples of helping functions are finding the distance between two points, or selecting the heading required for reaching a waypoint.

It is highly intuitive for an SME to provide much of this information in a query session. Of course, one cannot expect most SMEs to write the functions in a computing language. This will have to be done by a programmer or knowledge engineer. However, many of these functions will be standard, making them easily re-usable among different applications, thereby reducing the burden on the programmer. The CITKA system is based on this idea.

3. The CITKA Automated Query Process

The basis of this approach is based on an intelligent query session between the Subject Matter Expert (SME) and the CITKA system. The latter uses its own knowledge base to compose the queries in an intelligent fashion, selecting the next question based upon the SME’s previous responses. CITKA also has a feature to allow a Knowledge Engineer (KE) to complete and/or refine the knowledge entered by the SME. However, no queries are presented to the knowledge engineer.

The process of building a CGF model begins with a specification of the capabilities of the model. This specification is mission-specific, as one would expect the assets of the task force, however, small, to differ from mission to mission. Additionally, the enemy faced may also have widely varying capabilities. Once specified, the CGF model is developed by building the context base, that is, by defining the contexts, the procedures for context actions, the rules for transitions between contexts, and the necessary objects. Once created, the context base for the CGF model of interest is incorporated within the Context-based Reasoning (CxBR) Framework and linked to the simulation of choice to be executed. The CxBR Framework is the engine that exercises the knowledge represented as a context base to achieve the desired behaviors or actions. We assume here that the CxBR Framework exists, and is already linked to the simulation of choice. Our task is to 1) specify and 2) develop the context base. CITKA addresses both tasks. We now begin with this process.

3.1 Opening Screen

The opening screen seeks to get everything started. It first asks whether the user is an SME or a KE. Figure 2 depicts the basic opening screen.

Figure 2 – Opening Screen

The user merely points to the button marked either Subject Matter Expert or Knowledge Engineer and clicks it to set the appropriate context for the session. The active button will be visually highlighted for the duration of the session, or until the user selects the other one. This will mark the user mode of the system.

3.2 CITKA User Interface Screen Design

The CITKA screens consist of three areas. See Figure 3. The first area is the control area, and is located at the extreme left-hand side of the screen, covering a narrow slit from top to bottom. This area contains the active buttons that can move the user between the different parts of the knowledge base – called the “Current Area of Interest”. The active button represents the parts of the context base currently being created. The active button will always be visually highlighted. In addition, it will also have the same set of buttons shown in Figure 2, indicating the user mode of the system. This can be either the KE or the SME. Since the more serious research issues involve providing assistance to the SME via a sequence of intelligent questions, that is by far the more interesting of the two user modes. Therefore, from this point, we will assume we are in that mode unless otherwise indicated. Lastly, this area also has a button labeled “Enter” that is to be used after the user’s responses have been entered in the response area described below.

The second area is called the query area. It covers the upper half of the remaining screen area not covered by the control area. The questions and instructions to the user are contained here. The area is scrollable, with a scroll bar at the right hand side. It only contains text, and it is not active in any way.

The third area is the response area, where the user (the SME) will respond to the system’s queries. It covers the lower half of the remaining screen, and is just below the query area. Like the query area, the response area is also scrolled, with a scroll bar in the right hand side. Unlike the query area, however, the response area can be active. Depending on the response required from the SME, the response area will provide space for an unconstrained textual response, or it will specifically seek indication from the user in terms of multiple choice, true or false, or simple one-word answers..

Figure 3 – CITKA Screen Layout

After the opening screen, the great majority of screens will adhere to the above design. The only exceptions occur when the developed part of the context base is to be reviewed. In that case, a separate window is launched to display the knowledge entered and inferred by the CITKA system, and to allow a correction if needed. We now move on to the main SME screen.

3.3 Subject Matter Expert Interface Main Menu

This screen will first allow the SME to launch a file for context base development. It has three options: 1) Initialize a new (empty) file. 2) Load another context base file used for a previously developed CGF model. This facilitates reusing elements of similar previous models. 3) Load a working file to continue its development. The response area is the prototypical windows load box.

Once the context base file has been activated, the intelligent query module of CITKA begins to ask the SME a series of queries to develop the different parts of the context base. In order, the questions will deal with the following knowledge items:

(1) Mission description (Mission Context).

(2) Other entities or objects involved in the scenario.

(3) Major tasks (Main Contexts).

(3a) Actions associated with each main context.

(3b) Transitions to the next main context.

(4) Sub-contexts involved with each main context

(4a) Actions associated with each sub-context,

(4b) Transitions to other sub-contexts and the

associated main contexts,

(5) Short/long term situational memory of relevant events/conditions, and

(6) Helping functions needed to support/define abstract concepts used for context/sub-context actions, context/sub-context transition decisions or situational memory.
Some of these aspects of a context base are easier than others to capture and convert directly into useful code. More specifically, those responses that are unconstrained text will likely require interpretation by a KE for conversion into useful code. At some future point, a natural language processing module could be used to automate this process, at least partly. However, for the time being, it will have to rely on a human. The system continues asking questions of the SME until the knowledge for all six items in the list above have been completely accounted for. At this point, the system has done all it can, and must turn over completion of the context base to a knowledge engineer (KE). The KE can use the Knowledge Engineering interface to complete the work, or she can utilize any other tool to do so if desired. This interface is merely a screen editor and is not described any further.

4. CITKA Prototype Description

1) The CITKA prototype system consists of four modules of independent but cooperating subsystems. These modules are:

2) Knowledge Engineering Database Backend

3) Query Rule-base Backend

4) Knowledge Engineering Interface

5) Subject Matter Expert Interface

The Subject Matter Expert Interface module maps into the Query Rule-base Backend. The Knowledge Engineering Interface module maps into the Knowledge Engineering Database Backend module. The Knowledge Engineering Database Backend is a data structure that holds the evolving context base, as it gradually becomes developed, either by the knowledge engineer or by the subject matter expert. The Query rule-base Backend is a rule-based system containing the rules for executing the intelligent dialog with the subject matter expert. The requirements for the four systems are different and are treated separately in the following description.

4.1 Knowledge Engineering Database Backend

The KE database backend implements a persistent data structure that holds the information for the current context-base being developed.

1. This grammar is subject to the following constraints:

2. All Main Contexts should be part of the Mission Context (no Mainr Contexts should be allowed to float in the namespace).

3. Transition Functions and Action Definitions can be shared among contexts.

4. Deleting a Main Context eliminates all of it’s Sub-Contexts.

5. Deleting a Context will eliminate its Action Definitions and Transition Criteria only if they are not used by any other Context.

To implement these data structures, a table is created for each major type or Class. This simplifies access and maps more naturally to the Knowledge Engineering interface, which is designed in a table-driven fashion. The KE Database Backend module is being implemented in C++. However, requirements that it communicate efficiently with the query knowledge base may imply a re-implementation in a higher level list processing and pattern matching language latter on in the project (i.e., CLIPS).

Currently, the persistent property of the objects is provided by binary image storage of the memory data structures on disk. This is efficient but not optimal since binary image files are not portable across processor and operating system platforms. The Backus Naur grammar tree-like property of the data structures suggests that the best data representation would probably be a grammar tree provided with the appropriate parser and pretty printer for file input/output.

4.2 Query Rule-base Back End

The Query Rule-base Back End cannot be completely separated from the Knowledge Engineering database backend, and its presence modifies somewhat the requirements of the database. The query knowledge base is a rule-based system and needs pattern matching capabilities that the backend currently does not have. Different design and implementation strategies have been investigated for the AKA query and interaction with the database. Currently, the AKA queries are implemented in CLIPS, a commercial quality expert system development tool that provides an inference engine and strong pattern matching capabilities allowing flexible interaction.

The facts and rules in the AKA knowledge base are flat and basically duplicate the data structures for accessing the context base above, but in a flat-rule based model for easier query access. A rule is provided for each SME interface input screen. These query rules have to be mapped to buttons, checkboxes and menus by the SME Interface.

4.3 Knowledge Engineering Interface

1. Data entry in the Knowledge Engineering Interface is provided by eight interacting dialogs. These are:

2. Mission Context dialog.

3. Main Contexts dialog.

4. Sub-Contexts dialog.

5. Entity Objects dialog.

6. Helping Functions dialog.

7. Memory Variables dialog.

8. Transition Criteria dialog.

9. Action Definitions dialog.

This module has been implemented in its entirety, and is a simple data entry interface. It’s worth to note, however, that reasonable level of complexity exists, given the hierarchical nature of the database and the table nature of the required interface.

4.4 SME Interface

The SME interface is a GUI for the Query Rule-base Back End. Unfortunately, the best implementation for the query knowledge base (CLIPS) is not GUI oriented, so a flexible interface has to be provided that can access the CLIPS system. This interface is currently being coded in Tcl/Tk: a scripting language with strong user interface and program integration capabilities. It has the advantage of being cross platform (x86 Windows, Mac, Unix XWin) source-compatible. It was originally developed by Sun Microsystems and is now maintained by Scriptics Corp.

5. This environment allows a great deal of flexibility: the SME Interface must dynamically produce interfaces that correspond to the questions and rules that are fired in the Query Rule-base Back End rule base. Since the rules are pattern match generated, the number of them is not predetermined, and may grow depending on the facts in the knowledge base.

6. Evaluation of the CITKA System

The CITKA system was evaluated for its effectiveness. There were two main issues here: 1) Estimating the reduction in person-hour effort to develop a context-based model for a particular mission, and 2) Estimating the percent of a context-based model could conceivably be automatically developed through CITKA.

The baseline for comparison was the model building effort involved in the Human Behavior Representation Challenge project, sponsored by DMSO in 2001. The authors’ lab was a participant in this effort. The task was to develop a model of a sea vignette and execute it in a testbed composed of SPEEDES and VRForces. The vignette deals with a developing situation with an unfriendly maritime nation where tensions have risen progressively. A naval task force is dispatched to patrol the coast of this country as a show of force. It is also an attacking force if hostilities break out. The naval task force is composed of an aircraft carrier (the high value asset, or HVA), two anti-aircraft warfare picket ships to protect the carrier from airborne threats, and a 688 class attack submarine to protect the task force from naval threats – specifically, enemy diesel submarines. The blue submarine is tasked with monitoring activity in an enemy port, and if threatened, to protect the surface task force vessels. The rules of engagement are to not shoot at the enemy unless 1) enemy fires first, 2) a red submarine comes within torpedo range of surface assets, or 3) two threatening maneuvers are performed in sequence. The port monitoring task calls for a report to the surface assets within 12 hours of detection of significant port activity. The red force consists of up to three diesel boats, whose intentions may be unclear. There is an exercise area just outside the port, to which the red subs may proceed to maneuver. This is seen as non-threatening.

Table 1 - Summary of Estimates For SME Inputs (in person-hours)

Cumulative

Cumulative

Individual
(w/o Algorithms)
(With Algorithms)

(Low - High)
(Low - High)
(Low - High)

Overall Mission Description
3.2
-
6.3
3.2
-
6.3
3.2
-
6.3

Forces/Object Definition
6.0
-
11.8
9.2
-
18.1
9.2
-
18.1

Major Context Descriptions

W/o Algorithm Definition
7.3
-
14.4
16.5
-
32.5
16.5
-
32.5

Algorithm Definition
3.0
-
5.9

19.5
-
38.5

Total for MC Descriptions
10.3
-
20.3

Sub-context Descriptions

W/o Algorithm Definition
16.0
-
31.6
32.5
-
64.1
35.4
-
70.1

Algorithm Definition
6.6
-
13.2

42.0
-
83.3

Total for SC Descriptions
22.57
-
44.79

Situational Memory
1.3
-
1.8
33.8
-
65.9
43.4
-
85.0

Helping Functions Descriptions

W/o Algorithm Definition
11.9
-
20.4
45.7
-
86.3
55.2
-
105.4

Algorithm Definition
15.5
-
31.0

70.7
-
136.4

Total for HF Descriptions
27.4
-
51.4

Overall Totals
70.7
-
 136.4
45.7
-
86.3
70.7
-
136.4

However, any move towards the surface assets is considered alarming and must be challenged by the blue submarine.

It must be noted that at the time of this writing, the prototype described in section 4 above is not yet ready for evaluation. However, a PowerPoint slide presentation was developed to lay out the progression for the system. This sequence of slides was used as the basis for the estimates of effort and percent model completion.

5.1 Estimate of Effort to Develop Knowledge Base Using CITKA

The estimated person hours required to enter the knowledge required to execute the afore-mentioned sea vignette are shown in Table 1 above. They include a low and a high estimate. These estimates assumed 15 and 30 seconds respectively for the low and high estimates for entry of each name, value, etc., 10 seconds for each checkbox checked, and 2 and 4 (high and low) minutes per line of text entered. The text entry assumed 80 characters per line and a typing speed of 20 and 40 characters per minute (high and low), which includes time for typing, scrolling, and thinking.

The Cumulative columns show the running total in person-hours for the effort, with and without entering the algorithms. The idea behind algorithm description is that if the SME is capable of developing an algorithm and inputting it into CITKA, then the rightmost column reflects the running total. However, it is unrealistic to believe that a typical SME will be able to express an algorithm in a way readily transferable to a computer program. More likely, he will describe it in running text, and the KE would have to generate an algorithm from the description. In any case, the algorithm has to be done, whether by the SME or the KE, so we consider the right most column to be the more realistic of the two.

The results of Table 1 indicate a total of nearly 71 hours assuming an SME who responds quickly, and 136 assuming a slow one.

5.2 Estimate of Effort through Traditional Knowledge Base Development Methods

By comparison, the actual time involved in developing the sea vignette knowledge base through traditional methods is shown in Table 2.

Table 2 – Actual Hours Spent on Model Development

Task
Hours

Task Description

 1
134.5
Acquiring domain knowledge by KE

2
243.3
Model development, incl. algorithms

3
157.0
Learning curve on CxBR Framework

4
150.0
Coding of HBR model

The resulting total for all four tasks is 684.5 hours. However, making a direct comparison of this number to the estimated times obtained from the CITKA estimate requires some explanation.

Task 1 is the process of acquiring knowledge from experts. If an SME were to use CITKA in its ultimate, commercial form, this effort would not be necessary, as the SME would be doing that as part of the process of using CITKA. Therefore, it is logical to include the hours from Task 1 in the comparison.

Task 2 is directly replaced by CITKA (in its ultimate form), so it clearly should be considered. Whether to include Task 3 presents a more interesting argument. Certainly, once a KE becomes familiar with the CxBR Framework, this chunk of effort would not be required. Even with CITKA, the KE still needs to understand how Context-based Reasoning works in order to refine and complete the knowledge. However, seeing a partially complete knowledge base certainly facilitates the KE’s learning curve. Moreover, CITKA eliminates the need for the SME to understand CxBR in the first place. Therefore, arguably, this effort should also be considered in our comparison.

This leaves Task #4, coding of the model. Clearly, the actual coding of the model cannot be done by the SME, and is the responsibility of the KE. However, much of the context-based model merely represents creation of classes with the attributes assigned values, and their objects instantiated. This can easily be done by CITKA automatically, resulting in actual compilable source code. The area of greatest difficulty would be coding helping functions, and to a lesser extent, the transition rules. We can arguably assume that 80% of the code could be automatically generated (refer to section 5.3). This would replace 120 hours of the coding effort. Thus, adding together the portions of the four tasks that CITKA addresses results in nearly 655 hours. The estimated manpower effort with the use of CITKA compares very well with this benchmark number. It represents an improvement of 519 person-hours (655 – 136). It basically reduces the effort by 80%, even assuming a slow responding user. The resulting improvement is nearly 90% if a speedier user is assumed (655 – 71 = 584 hrs savings).

5.3 Model Completion Estimate

The next question is to estimate how much of a model could be reasonably developed automatically. This estimate is more difficult to make. At this point, we can only guess, based on our experience with the sea vignette. Let’s analyze this a bit further.

It is clear that 100% of the specification can be generated automatically. The specification consists of a listing of all defined contexts (Mission, Main and Sub-), their attributes, functions and transition rules. These are all described in textual form in the specification. Additionally, the specification includes all objects involved in the scenario, and possibly their capabilities, as either obtained from a historical database, or directly from the SME. Our estimate of 100% is justified by the fact that there is no code required with the specification.

7. The context base, of course, will require coding. The algorithms may be described by the SME, but they must be turned into compilable code by the KE. This would not be possible with CITKA, at least not at the level we currently envision it. However, the class definitions for the contexts and the objects that participate in the mission can be put into code directly by CITKA. So can the transition rules. Thus, it would be reasonable to expect that 50 to 80% of the model would consist of code elements that can be directly generated by CITKA. Furthermore, as some of these functions and methods are archived and reused, this total may increase. However, this number is admittedly a bit of guesswork. A more detailed analysis of this will be forthcoming when we evaluate the prototype system currently finishing development.

8. Summary

We believe that CxBR, by its very nature, facilitates the knowledge acquisition task for tactical behavior models in computer generated forces. Here we described our concepts for building a system to do this very thing. We furthermore describe a prototype system under development to prove its technical feasibility, and evaluate the potential effectiveness of the system from a theoretical standpoint. The results indicate significant savings in development effort for models of human tactical behavior. Furthermore, in a similar analysis, we estimate that the model could be between 50 and 80% completed automatically through this system.

9. We expect to confirm these numbers when we evaluate our prototype system in the coming months. In this planned exercise, we will have SMEs in the sea vignette use the CITKA prototype to create a knowledge base, or parts thereof, automatically. If such SMEs are not readily available, we will instead use our knowledge engineers who may have become quasi-experts based on the traditional interviews conducted.

10. Acknowledgement

11. This project has been sponsored by the Defense Modeling and Simulation Office, contract number N61339-01-P-0216, LTC Eileen Bjorkman, Dr. Ruth Willis and Dr. John Tyler, Program Managers at one time or another. We appreciate their support, financial, technical and moral.

12. References

[1] Delugach, H. S. and Skipper, D. J., “Knowledge Techniques for Advanced Conceptual Modeling”, Proceedings of the 9th Conference on Computer Generated Forces and Behavior Representation, Orlando FL, May 2000.

[2] Gonzalez, A. J., Georgiopoulos, M., DeMara, R. F., Henninger, A. E., and Gerber, W., “Automating the CGF Model Development and Refinement Process by Observing Expert Behavior in a Simulation”, Proceedings of the 7th Conference on Computer Generated Forces and Behavior Representation, Orlando, FL., July, 1998.

[3] Van Lent, M. and Laird, J., “Learning by Observation in a Tactical Air Combat Domain”, Proceedings of the 8th Conference on Computer Generated Forces and Behavior Representation. Orlando FL, May 1998.

[4] Morrison, J. D., “Real time Learning of Doctrine and Tactics Using Neural Networks and Combat Simulations”, Military Operations Research, Vol. 2, No. 3, 1996, pages 45-60.

[5] Hovland, G. E., Sikka, P., and MacCarragher, B. J., “Skill Acquisition from Human Demonstration Using a Hidden Markov Model”. In Proceedings of the IEEE International Conference on Robotics and Automation, vol. 3, 1997, pp. 2706-2711.

[6] Gonzalez, A. J. and Ahlers, R., “Context-Based representation of intelligent behavior in training simulations”, Transactions of the Society of Computer Simulation, Vol. 15, No. 4, 1998, pp. 153-166.

Response Area

Query Area

Help

Knowledge Engineer

Subject Matter Expert

Exit

Context-based Intelligent Tactical Knowledge Acquisition

Help

Exit

Sub-Context2

Sub-Context1

Main Context2

Main Context1

Mission Context

Control

